Goals: (1) Create a library of video kernels, based on the AVS (Audio Video Standard) codec. (2) Explore the performance limiting factors on modern multicore architectures.

Motivation

Digital video has applications in various aspects of our life:
- **Entertainment** (movies, digital TV, personal videos, video-calling)
- **Sciences** (medical applications, environmental monitoring)
- **Education** (video lectures, tele-education, documentaries)
- **Security** (video surveillance)

Video resolutions increase each generation:
- Full High Definition (1920x1080 pixels) – typical nowadays
- Ultra High Definition (7680x4320 pixels) – on its way
- 3D Video – complicates things even further!

Storage and transmission of uncompressed raw video is prohibitive.

Need for efficient (preferably real-time) video encoding, decoding, and transcoding.

Results

Execution time and performance for varying levels of optimization:
- Sequential code (reference)
- Sequential code with software optimizations
- Parallel code with two and four simultaneous threads
- Parallel code with four simultaneous optimized threads

Overall speedup: 4.84 to 5.63

Optimizations and Tradeoffs

Single task queue & variable length decoding (VLD) becoming the bottleneck, as the number of cores increase.

Solution?
- Use a distributed queue scheme (1 task queue/core)
- Perform video-related algorithmic changes

Future Work

Ongoing research focuses on efficient mapping of the AVS decoder on a GPU.

Future work will focus on applying our techniques to other scientific domains:
- GPUs in bioinformatics
- GPUs in neuroscience

Related Work

K. Krommydas et al., “Mapping and optimization of the AVS video decoder on a high performance chip multiprocessor”, IEEE ICME 2010

K. Krommydas et al., “AVS video decoder on multicore systems: optimizations and tradeoffs”, IEEE ICME 2011

Acknowledgements

This work is supported primarily by the Institute for Critical Technology and Applied Science (ICTAS).

Christos Antonopoulos & Nikolaos Bellas, U. Thessaly, Greece

Contacts

kokrommy@vt.edu

wfeng@vt.edu