BIO-HYDROGEN

Thermophilic enzymes

- **Properties of thermophilic enzyme**
 - [Fig. 6. Thermal stability of the enzyme](Image)
 - Enzyme precipitation at 75°C.
 - The purified protein was incubated in 100 mM of HEPES buffer (pH 7.5).

Pathways of the enzymatic cascade reactions

- **Target enzymes for cascade reactions**
 - [Fig. 12 Target enzyme reaction for demonstration of cascade reaction by TIM, ALD, FBP, and PGI](Image)

Simple low cost purification of thermo-enzymes

- **Co-immobilization of the four enzymes in hybrid microcapsule**
 - [Fig. 18. SDS-PAGE analysis of the purified recombinant enzyme for co-immobilization, S, cell; yaeT; P, purified enzymes](Image)

Immobilization of enzymes

- **One-step purification & immobilization of enzyme**
 - [Fig. 8. One-step protein purification and immobilization of a CBM-tagged Clostridium Thermostoma phosphoglucomutase (PGI, EC 5.3.1.9) on a cellulose filter](Image)
 - Enzyme precipitation at 75°C.

Thermal stability of the immobilized enzyme

- [Fig. 11. Thermal stability (half-life time, t1/2) of free PGI (a) and immobilized CBM-PI (b) at different concentrations of enzyme in 100 mM of HEPES buffer (pH 7.5) containing 100 mM NaCl and 10 mM MgCl2 at 80 °C](Image)

Summary

- [Fig. 13. Scheme of enzymatic pathway containing enzyme-limited reactions and substrate-limited reactions](Image)
 - Ln (residual activity %)
 - Time (h)
 - 60

References

Challenges and possible solutions in vitro SyPAb

- [Fig. 2. The non-SyPAb for high yield hydrogen generation from starch or cellulose materials](Image)
 - Y.-P. Zhang, Microbes 4 (2009), S60.
 - CHO2+CHO2+ = THF (I) + 12% (g) + EC0 (g)

THERMOPHILIC ENZYMES

- **Fig. 5. Optimal thermostability of the purified FBP (EC 5.1.1.17) from hyperthermophilic bacteria Thermotoga maritima at pH 7.5**

ENZYMATIC CASCADE REACTIONS

- **Fig. 10. Leakage of the CBM-PGI**
 - [Different concentrations of enzyme in 100 mM of HEPES buffer (pH 7.5) containing 100 mM NaCl and 10 mM MgCl2 at 80 °C](Image)

PURIFICATION OF ENZYMES

- **Fig. 7. Single step low cost purification of a thermo-enzyme**
 - Thermostable Enzyme (E), FBPase (15 U/mg), EC 4.1.2.13) by heat precipitation and enzyme solubilization. Final precipitation is approximately 90% of the initial enzyme.

IMMobilization of enzymes

- **Fig. 9. A family 2 cellulase binding module (CBM) from the Clostridium thermostoma phosphoglucomutase (PGI, EC 5.3.1.9) on a cellulose filter**

Fig. 14. Simulation results based the kinetic of the enzymes (substrate: 5 mM gal)

Fig. 15. Leakage of the CBM-PGI

Fig. 16. Scheme of co-immobilization in hybrid microcapsules as a biocatalytic module

Fig. 17. Scheme of immobilization in hybrid microcapsules as a biocatalytic module

Fig. 3. Two different electricity generation systems based on carbohydrates. (a) High power electricity generator. (b) Low power battery. **Y.-P. Zhang, International Journal of Hydrogen Energy. 30 (2010) 1034–1042

Fig. 1. Scheme of the hydrogen economy based on renewable carbohydrate

Fig. 4. Bioenergy Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA. 3 DOE Energy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA. Email: swmyung@vt.edu or biofuels@ctas.vt.edu

Abstract

The production of hydrogen from low-cost renewable biomass is appealing because biomass is an enriched, collectable renewable energy source. The use of carbohydrates as high-density hydrogen carriers and energy sources for hydrogen production is possible due to cell-free synthetic biology technology. Synthetic pathway biotransformation (SyPB) is the implementation of complex biochemical reactions in the vitro assembly of a large number of enzymes and coenzymes. Hydrogen can be produced from carbohydrate with an overall reaction of CH2O + 3H2O → 2H2 + 2CO2 + 4H2O. As a result, nearly 12 miles of hydrogen are produced per gallon equivalent of polyacrylamides and water by this non-natural synthetic pathway which contains 13-14 enzymes. For facilitating cascade reactions among three enzymes: Thermus thermophilus triose phosphate isomerase (TtTIM), Thermotoga maritima fructose bisphophate aldolase (TmALD), Thermotoga maritima fructose 6,6-bisphosphatase (TmFBP), and Clostridium cellulose binding module phosphoglucomutase (CmolPGI), we need find optimal conditions and proper enzyme ratios for co-immobilized enzymes. In this poster, we will present our recent progresses in properties of thermophilic enzymes, their purification and immobilization, and enzymatic cascade reactions.